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Abstract—As power becomes one of the most important re-
sources to provision while building modern HPC systems and
applications, it becomes crucial to obtain deeper insights into
applications’ power and thermal characteristics. There exists a
need to correlate application context with processor-level and
system-level power and thermal measurements. Existing profiling
tools to monitor power and thermal measurements either operate
at a granularity that is not fine enough to correlate with
application-level events that describe application context or are
not equipped to sample application-level events. In this work,
we introduce libPowerMon, a lightweight user-level profiling
framework to simultaneously sample user-specified application
events and system-level metrics at up to 1 kHz sampling intervals.
At the application level, libPowerMon provides a source-level
phase markup interface to capture application context. It records
MPI and OpenMP events, and samples processor state at a finer
temporal granularity. At the system level, libPowerMon samples
power and thermal characteristics and provides an interface to
set processor and DRAM power. We present three case studies
that demonstrate the benefits of libPowerMon in saving cluster-
level power and improving application performance within a
system-enforced power limit.

Keywords-profiling; program context; power; thermal mea-
surements; performance

I. INTRODUCTION

As high performance computing (HPC) architectures ap-
proach exascale, power is becoming a critical operating con-
straint rather than an optimization goal. Power bounds imposed
by the limitations of existing infrastructure as well as the
stakeholders drive the need to develop new techniques to
extract maximum performance at limited power. Achieving
optimal performance on power-constrained resources requires
a fine-grained understanding of power usage and performance
profile of the application. Without source-level modifications,
existing profiling methods may be extended to provide ag-
gregated rather than fine-grained node-level power and per-
formance characteristics of the application. Detailed profiling
of application-level power and performance characteristics
requires potentially expensive and tedious source-level mod-
ifications. Given the limitations of existing profiling tools to
capture unique power and performance profiles of individual
phases of an application, it becomes difficult to allocate power
to critical parts of the application to improve performance.

To improve upon these limitations, we present libPower-
Mon, a phase-level power and performance sampling frame-
work. libPowerMon samples, at a configurable sampling inter-

val, the following state of the application: current timestamp,
MPI calls, OpenMP events and call site, hardware performance
counters, and processor and DRAM power use. libPower-
Mon also provides additional capabilities to identify logical
phases demarcated through simple phase markup routines for
post-processing. libPowerMon also consists of independent
software components to capture node-level sensor data to
primarily provide a deeper understanding of the phase-level
power-usage characteristics of HPC applications at scale. With
the help of this tool, we have been able to shorten the gap
between node-level power draw and processor and DRAM
power usage.

In order to demonstrate the benefits of correlating appli-
cation context with system-level metrics, enabled by libPow-
erMon, we present three case studies. First, libPowerMon
enabled us to observe the temporally non-deterministic nature
of certain computation phases of the ParaDiS code [1]. Corre-
lating power measurements with program context guided us in
re-defining computation phases around power usage signatures
instead of logical function boundaries. Such findings about the
nature of computation phases of production applications such
as ParaDiS are crucial towards improving the effectiveness of
a power-optimizing run-time system. Second, analysis using
libPowerMon showed that fans on our cluster nodes ran at
full speed settings regardless of the processor temperature at
various power limits. By adjusting the inefficient fan speed
settings on each node, we saved over 15 kW of power at the
cluster level.

Finally, we used libPowerMon to measure the impact of
application configuration options on phase-level and node-
level characteristics of linear solver applications. We found
that a trade-off exists for different linear solver options in
terms of power usage and performance subject to a global
power constraint for two problems: 27-point 3D Laplacian and
Convection-diffusion. Aggregate power measurements of im-
portant computation phases showed that for a system-enforced
power limit, selecting a superior algorithm and configuration
based on empirical data results in up to 15% improvement in
application performance.

II. MOTIVATION

Several application profiling tools exist that help applica-
tion developers and users record and characterize application
behavior by profiling application-level events. These profiling



tools can transparently collect application phases marked by
the user and can typically record aggregate events associated
with these phases. For example, it is possible to record
attributes such as aggregate power usage or cumulative per-
formance counters between successive application-level events
such as MPI calls. Due to the arbitrary nature of such events
captured by profiling tools, the gaps between successive data
points tend to be arbitrary, which makes it difficult to extract
instantaneous values of the metrics being captured. Moreover,
such profiling tools suffer from high run-time overhead as the
recording or in-situ processing of events potentially occurs on
the critical path of the application.

On the other end of the spectrum are system-level mea-
surements tools, typically operated as independent hardware
modules (on-board sensors, third party power and temperature
meters, etc.). These profiling tools perform sampling-based
profiling of system-level metrics at a high sampling rate.
However, these tools suffer from lack of program context in
order to draw meaningful observations from the collected data.
Also, such modules are either extremely difficult or impossible
to install at scale due to high aggregate costs or the sensitive
nature of codes running on clusters at national laboratories
such as LLNL. Therefore, in order to correlate application con-
text with system-level power and relevant metrics, it becomes
necessary to develop infrastructure that can sample and record
at these levels. libPowerMon presented in this work enables
profiling of this kind for the first time on our clusters.

III. APPLICATION- AND SYSTEM-LEVEL PROFILING
INFRASTRUCTURE

This section describes our design approach and imple-
mentation details of the profiling framework components.
First, we provide an overview of the different processor- and
node-level profiling tools that we employ in libPowerMon to
characterize phase-level power and performance characteristics
of the application. Second, we discuss our node-level sampling
component. Finally, we describe the design and implemen-
tation of our sampling-based phase-level profiling library to
capture user-annotated phases, MPI calls, OpenMP events,
user-defined MSR counters and power usage information.

A. Monitoring Tools and Interfaces

To monitor application phases and system-level metrics, we
employed following existing monitoring interfaces and tools.

IPMI interface: The Intelligent Platform Management In-
terface (IPMI) specification defines a set of interfaces for
platform management that include sensor monitoring, sys-
tem event monitoring, power control, and serial-over-LAN
(SOL) [2]. We used ipmi-sensors tool to record current read-
ings of sensors available on the node hardware.

LibMSR: libMSR is a user-level interface to several model-
specific registers in Intel processors [3]. We used libMSR to
record hardware performance counters, effective frequency,
temperature, and processor and DRAM power draw on each
compute node.

TABLE I
IPMI DATA COLLECTED BY libPowerMon.

Entity IPMI field Description

Node
power PS1 Input Power Power supply 1 input power

Node
current PS1 Curr Out Power Supply 1 Max. Current

Output

Node
voltage

BB [12.0V|5.0V|3.3V] Baseboard +12V|+5V|+3.3V

BB 1.5 P[1-2]MEM Baseboard processor memory
voltage

BB 1.05Vccp P[1-2] Baseboard processor voltage

Node
thermal

BB P[1-2] VR Temp Processor voltage regulator
temperature

Front Panel Temp Front panel temperature
SSB Temp Server South Bridge temp.
Exit Air Temp Exit air temperature
PS1 Temperature Power supply 1 temperature

Processor
thermal

P[1-2] Therm Margin Processor thermal margin
P[1-2] DTS Therm Mgn Processor DTS thermal margin
DIMM Thrm Mrgn [1-4] DIMM Thermal Margin

Node
air flow

System Airflow Volumetric airflow in CFM
System Fan [1-5] Fan speeds in RPM

PMPI profiling layer: We used the PMPI profiling layer
to initiate and terminate our sampling framework and to
capture MPI event entry and exit at run-time. With the PMPI
profiling layer the sampling library we can intercept MPI calls
through static or dynamic linking with the application without
introducing direct source-level changes.

OpenMP tools: We used OpenMP tools interface to record
entry into and exit from OpenMP parallel regions [4]. We
introduced OpenMP callbacks to log meta data associated with
each OpenMP region invocation such as OpenMP region ID,
call site and stack back-trace.

Using the monitoring interfaces, we developed a two-
level sampling framework to sample system-level metrics and
application-level context. First, we developed a node-level
component to record system-level sensor data available on the
compute nodes on the clusters at Lawrence Livermore National
Laboratory (LLNL). Second, we developed a sampling library
that is invoked at run-time during application initialization
to sample application context and processor-level hardware
performance counters. This is the first time such two-level
sampling framework has been deployed on LLNL clusters.

B. Node-level Component: IPMI Recording Module

On LLNL clusters, reading IPMI sensor data requires root
access which severely limits access to node-level sensors.
We developed software components to enable IPMI profiling
for regular users on these clusters. The software components
include a job scheduler plug-in that is invoked after the
compute resources have been allocated but before the job
has been started. A sampling script then samples IPMI data
through freeIPMI [2] interface in the background. The sampled
data on all compute nodes along with UNIX timestamp is
funneled into one sampling log that is prefixed with the job ID
and compute node ID for convenient post-processing. Table I



enumerates an interesting subset of sensor data that we capture
on the compute nodes on LLNL clusters.

C. Application-level Component: Sampling Library

Figure 1 shows the system model with various application-
level, processor-level and node-level components of libPow-
erMon. libPowerMon links with the application transparently
through the PMPI profiling layer. After MPI_Init(), libPow-
erMon initializes the sampling environment based on the
user-specified configuration defined through the environment
variables. libPowerMon initializes the headers in the main
trace file and an optional per-process file to report instances
of single or nested application phases between successive
samples. The format of the trace file is described in Table
II. Due to the overhead associated with on-line processing of
the data to be sampled, libPowerMon records some of the data
online and stores the rest of the data in the memory for post-
processing offline.

Figure 1. System model describing node-level, processor-level and source-
level components of libPowerMon.

Phase markup interface: libPowerMon provides a minimal,
low-overhead interface to the user for source-level phase
markup annotations. Through the interface, each interesting
application phase can be assigned an ID, and the start and end
of the phase can be specified. The phase markup functions
log entry or exit of a phase along with a timestamp. The
sampling library post-processes the log to derive phase-stack
information and appends it to the trace.

Sampling instantaneous application state: The primary pro-
filing component of libPowerMon is a dedicated thread to sam-
ple application performance metrics. The sampling thread is
spawned at the end of MPI_Init() and it is pinned to the largest
core ID to minimize its interference with the application. The
number of MPI processes assigned to one sampling thread can
be configured at initialization. The sampling logic uses UNIX
shared memory interface to read the sampled data recorded
by each MPI process after MPI_Init(). The sampling logic
uses LibMSR to record user-specified MSRs, APERF/MPERF,
Time Stamp Counter (TSC), derived processor temperature,
derived processor power usage and DRAM power usage. The

TABLE II
APPLICATION-LEVEL AND SYSTEM-LEVEL DATA SAMPLED BY

libPowerMon.

Field Description

Timestamp.g UNIX timestamp of a sample (seconds)
Timestamp.l Relative timestamp of the sample since MPI_Init()

(milliseconds)
Node ID Node ID of MPI process
Job ID Job ID of MPI process
Phase ID A list of phases (as demarcated in the application

source) that appeared in a sampling interval
MPI_start,
MPI_end

MPI event log including entry and exit timestamp,
calling phase ID and MPI-specific information

Hardware counters User-specified hardware performance counters
Temperature Processor temperature data
APERF, MPERF Hardware performance counters to calculate effec-

tive processor frequency
Power usage Processor and DRAM power draw (watts)
Power limits User-defined processor and DRAM power limits

(watts)

sampling logic also records the UNIX timestamp in seconds
(to allow merging of the sampled data with the IPMI data at
post-processing) and a per-process timestamp in milliseconds
relative to MPI_Init() initialization time.

Issues in data collection: The logic for on-line phase-stack
sampling and processing along with MPI event profiling intro-
duced unwanted overheads in the execution of the sampling
thread. At one-millisecond granularity, phase-stack sampling
and MPI event logging produced a large trace data especially
for applications with high phase counts and MPI operations.
This stalled the sampling thread at arbitrary intervals and
introduced non-uniformity in the sampling interval. Our in-
vestigation revealed that the stalls also happened due to write
buffer flushes by the operating system at arbitrary intervals. To
resolve this issue, we enabled partial buffering of trace data
for minimizing the size of in-memory trace as well as the size
of write buffer. We introduced post-processing logic to process
phase stack and MPI event profile in the MPI_Finalize PMPI
handler. These significantly reduced the on-line overhead in
the sampling thread and resolved the issue of non-uniformity
in sampling.

Overheads: We measured the overhead of running MPI ap-
plications with our sampling framework with two different
settings: 1) no MPI process was bound and 2) an MPI process
was bound to the sampling thread core. We measured the
overhead for an application with over 50 nested phases and
generated over a 100 MPI events every few seconds. We set
sampling frequencies between 1 Hz and 1 kHz. When no
MPI process bound to the sampling thread core, libPowerMon
introduced less than 1% overhead in execution time even at
1 kHz sampling frequency. When an MPI process was bound
to the sampling thread core, libPowerMon introduced between
1% to 5% overhead in execution time.
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Figure 2. Progress and power usage of several phases of the ParaDiS application running with 8 MPI processes on a processor. The overlap of power usage
over phase boundary of phase 11 shows the granularity at which the phase boundaries must be revised.

IV. EXPERIMENTAL SETUP AND MEASUREMENTS

We deployed our sampling framework on two LLNL clus-
ters: Catalyst and Cab. Catalyst is a 324-node Intel Xeon E5-
2695 Ivy Bridge cluster with an InfiniBand QDR interconnect.
Each Catalyst node is composed of two 12-core processors
and 128 GB of DRAM. Cab is a 1296-node Intel Xeon E5-
2670 cluster with an InfiniBand QDR interconnect. Each Cab
node is composed of two 8-core processors and 32 GB of
DRAM. We have evaluated the sampling library component
on both clusters, but the installation of our IPMI recording
component has been confined to Catalyst due to lack of root-
level permissions on Cab. Therefore, the case studies presented
in the rest of the paper are based on our experiments solely
on the Catalyst cluster.

For benchmarking, we used FT and EP applications from
the NAS Parallel Benchmark Suite [5], ParaDiS [1] and
CoMD applications [6]. NAS EP is a primarily computation-
bound application ideal for testing power characteristics of a
platform. NAS FT and CoMD applications have varying de-
grees of compute, memory and communication boundedness.
ParaDiS [1] is a production dislocation dynamics simulations
application that operates on unbalanced, dynamically changing
data set sizes across MPI processes. The random nature of data
set sizes results in non-determinism and varying computational
load across MPI processes.

For our first case study with ParaDiS, we used a modified
version of the “Copper” input set provided with ParaDiS with
100 timesteps. We ran ParaDiS at 16 MPI processes with 8
MPI processes on each processor of the Catalyst node. We
fixed the processor power limit to 80 watts. For our second
case study, we configured NAS EP and FT with class C input
size at 16 MPI processes. We chose class C input size to
ensure long enough execution times for our tests. We also
chose CoMD as our third application for which we chose
input problem size of 50x50x50 with 100 timesteps. We ran
all applications on a single node with 8 MPI processes on each
processor. We varied the processor power limit from 30 watts
to 90 watts in steps of 5 watts. For our third use case, we

used the new_ij application provided with the HYPRE library.
We ran new_ij with 27-point Laplacian and Convection-
diffusion problem configurations at 8 MPI processes with 2
MPI processes on each node (1 process on each processor). We
varied the number of OpenMP threads from 1 to 12. Section
VII describes the details of new_ij application provided with
the HYPRE library and relevant configuration options.

V. CASE STUDY I: CHARACTERIZING PHASES OF
APPLICATIONS WITH NON-DETERMINISM: PARADIS

This case study presents of our initial findings with ParaDiS
application using libPowerMon. First, we demonstrate that
using libPowerMon we were able to visually correlate, for
the first time, processor-level power metrics with application
phases. Second, we describe how the phase-level characteris-
tics of ParaDiS changed our (rather simple) assumptions about
how typical HPC applications behave.

A. Correlating Processor-level Power with Application Phases

Figure 2 shows a partial snapshot of execution of ParaDiS
application covering 8 MPI processes on a processor. The
processor-level power limit was set to 80 watts. The processor-
level power usage was sampled at 100 Hz frequency. The
figure shows distinct phase boundaries manually marked in
ParaDiS source code and the node-level power usage of
individual phases.

We make several observations from the figure. First, while
some phases operate near the processor-level power limit, a
major portion of the execution was spent at a low power
draw near 51 watts. This information is visually useful in
understanding the distribution of fine-grained power usage
under a processor power limit. Second, successive invocation
of some phases shows different execution times. For example,
Figure 2 shows that phases 6 and 11 are invoked repeatedly,
but they perform differently across invocations. Third, the
processor-level power usage signature of phase 6 is different
across invocations, suggesting different computation charac-
teristics across those invocations. Finally, processor power
usage within a phase shows significant variation (e.g., phase
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Figure 3. Progress of various phases of ParaDiS running with 16 MPI processes on one node (8 MPI processes per processor). Phases with non-deterministic
occurrence are shown in darker shades.

11) which suggests that phases must be redefined beyond
semantic boundaries based on power-usage characteristics.
Such demarcation of phases is potentially beneficial to power-
constrained run-time systems that depend on the user to outline
phase boundaries for their power allocation strategies [7].

B. Identifying Phase-level Non-determinism

Figure 3 shows a full-scale run of ParaDiS at 16 MPI tasks.
Repeating phases are shown in shades of light colors whereas,
arbitrarily occurring phases are shown in darker colors. An
example of an arbitrarily occurring phase is phase 12 (shown
in blue) which appears arbitrarily in the execution path of
most MPI processes. We found that the amount of time spent
in phase 12 and its occurrences throughout the execution
of the application are unpredictable. The presence of such
arbitrarily occurring phases in the execution path shows that it
is much more challenging to apply to ParaDiS the optimization
techniques that rely on the repetitive nature applications. Our
observations provide a compelling reason to look beyond de-
terministic, load-balanced proxy applications commonly used
to evaluate power and performance optimization approaches.

VI. CASE STUDY II: SYSTEM-WIDE POWER SAVINGS
THROUGH INSIGHTS INTO FAN SETTINGS

The purpose of this case study is to understand, for the
first time, the node-level power draw for different applica-
tions. We demonstrate that the combination of IPMI profil-
ing (total node power) and RAPL profiling (processor and
DRAM power) allowed us, for the first time, to measure
static power in userspace and correlate those measurements
to application execution. We used libPowerMon to record
various metrics specified in Table II for three standard HPC
benchmarks with varying processor and memory-boundedness,
and a computation-bound application configured to run the
processors as fast as possible. We configured our experiments
at processor power limits from low to high on nodes with
processors known to have low variation.

A. Initial Observations and Configuration Recommendations

Figure 4 shows our node-level and processor-level power
measurements along with aggregate fan speeds for the three
applications. Node power was consistently 120 watts greater
than the sum of processor and DRAM power, and fan speeds
remained near the maximum RPM (revolutions per minute)
regardless of the amount of power being used by the applica-
tion. In this case, static power was approximately 100 watts
regardless of what the processor was doing. This observation
was true even at lowest power limits which ran processors
much cooler. The thermal headroom available to processors
was between 70 °C to 50 °C for minimum and maximum
power limits even for compute-bound applications. The ob-
vious diagnosis turned out to be correct: the BIOS fan speed
setting was effectively set to performance mode at over 10,000
RPM. Further investigation into the default BIOS fan settings
on the compute nodes confirmed our diagnosis about a high
fan power draw (each node houses five fans). We requested the
fan setting to be altered to auto which, according to the server
board specification controls fan speed based on instantaneous
processor temperature.

Based on our recommendations, the Catalyst cluster was
rebooted using a new BIOS setting. Static power dropped by
at least 50 watts per node with the new fan speeds in the
range of 4500-4600 RPM (>50% decrease in RPM compared
to maximum). Given the 300+ compute nodes, and given that
these five 20W fans per node were running at full speeds
whether the node was idle or busy, we are now saving on
the order of 15kW of power on this cluster alone.

Based on this data, we observed a 4 °C increase in node
temperature (maximum increase of 9 °C) and a 1 °C increase
in intake air temperature. Figure 5 shows the comparison
between various node-level and processor-level measurements
for the three applications. Out of the three applications, FT
showed less than 10% performance degradation at the lowest
power bounds but we have not yet been able to verify if
this is within normal variation. For all three applications, the
thermal headroom decreased by as much as 20 °C (60 °C to
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Figure 4. Observed node-level and processor-level metrics of power usage, fan speed and processor temperature at different power bounds for three
applications: EP, CoMD and FT.
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Figure 5. Comparison of change in node-level and processor-level measurements between full versus automatic fan speed settings.

40 °C). Most interesting, perhaps, is that there is still only a
weak correlation between total node power and fan speeds.
We suspect that the fans are still running too fast much of the
time given that a significant thermal headroom still exists (the
extra RPMs do not contribute any additional performance) and
perhaps not running fast enough at high loads (thus reducing
the effectiveness of the CPU turbo mode due to reduced
thermal headroom on the processors). A strong statistical
correlation between input power and processor temperatures
at different power limits with automatic fan setting makes our

suspicion stronger.

B. Ramifications of the New Fan Settings
Due to the cluster being a shared resource we do not have

nearly as much before-and-after data as we would like. We are
conscious of the fact that effects are both per-application and
per-node, so we are limited to a handful of results where the
same application was run on the same nodes both before and
after the change in fan settings. Therefore, with the new fan
settings, we now need to answer the following questions. How
much of that savings is being spent with increased cooling



costs? How much has application performance been affected?
Do we have the optimal fan setting for these nodes? Our on-
going work is focused on answering these questions.

VII. CASE STUDY III: IMPACT OF CONFIGURATION
OPTIONS ON POWER-CONSTRAINED PERFORMANCE

This case study demonstrates the benefit of using libPower-
Mon to understand the power usage vs. performance character-
istics of application phases for different algorithmic and data
representation choices of an application. A typical scientific
application (e.g. a class of linear solvers) provides several
configuration options to select the algorithm, intermediate data
models and the level of accuracy of the output for a given
input problem configuration. Traditionally, such algorithms
have been designed considering full computation power of
the processor at maximum operating frequency and in terms
of number of available cores. Therefore, any slowdown in
the operating frequency of the processor when hardware-level
power constraints are applied by the run-time system can affect
the performance and consumed power of the algorithms. Given
that HPC clusters are being overprovisioned for compute
resources with power as the limited factor [7], it has become
necessary to quantify the impact of hardware-enforced proces-
sor power limits on these algorithms that are not necessarily
optimized for arbitrary processor power allocation.

Existing tools to measure aggregate power across several
runs of such configurations are limited in capturing critical
application context necessary to understand power and per-
formance characteristics of these algorithms. We use libPow-
erMon with such class of applications to record program
context and power usage metrics of important phases of
the chosen algorithm with the selected configuration options.
Using application context information, execution time and
system-level power metrics, we correlate, for the first time, the
effect of changing the computation algorithm and its configu-
ration options on the power and performance characteristics of
important phases in the application. We consider two candidate
problems for this case study: Convection-diffusion and 27-
point Laplacian solved by the new_ij application provided
with the HYPRE library [8]. We describe in detail our study of
impact of selecting different configurations involving HYPRE
solver options, level of concurrency and processor-level power
limits on phase-level power and performance trade-offs.

A. Description of Sample Problems

new_ij is a test program distributed with HYPRE that allows
for the evaluation of different Algebraic MultiGrid (AMG)
solver parameters, such as solver type, smoother type, coarsen-
ing strategy, and interpolation scheme on a number of different
test problems. In our work, we varied the solver options
summarized in Table III using two different test problems:

27pt: a 3D Laplace problem discretized using a 27-point
finite difference stencil on a cube.

Convection-diffusion: the steady-state convection-diffusion
problem

−cxuxx − cyuyy − czuzz + axux + ayuy + azuz = 1

discretized using a 7-point stencil on a cube, with all ci and
ai set to 1. Second-order centered differences are used for the
second derivatives, and first-order forward differences are used
for the first derivatives.

TABLE III
HYPRE SOLVER CONFIGURATION OPTIONS FOR new_ij

Solver Smoother

AMG Hybrid Gauss-Seidel
AMG-PCG Hybrid backward Gauss-Seidel
DS-PCG Forward L1-Gauss-Seidel
AMG-GMRES Chebyshev
DS-GMRES
AMG-CGNR Coarsening options

DS-CGNR hmis
PILUT-GMRES pmis
ParaSails-PCG
AMG-BiCGSTAB Pmx

DS-BiCGSTAB 2
GSMG 4
GSMG-PCG 6
GSMG-GMRES
ParaSails-GMRES Fixed options

DS-LGMRES -intertype 6
AMG-LGMRES -tol 1e-8
DS-FlexGMRES -agg_nl 1
AMG-FlexGMRES -CF 0

The solver options in Table III that are allowed to vary over
four different areas: solver, smoother, coarsening scheme, and
interpolation operator. Additionally, there are four options that
are kept fixed. Due to space limitations, we only discuss the
above four options important in this case study.

The solvers considered were standalone algebraic multigrid
(AMG), along with a number of different preconditioned
Krylov subspace methods. In the case of AMG or solvers
preconditioned with it (AMG-PCG, AMG-GMRES, AMG-
CGNR, AMG-BiCGSTAB, AMG-LGMRES, and AMG-
FlexGMRES), the implementation used was Hypre’s own
BoomerAMG solver [9]. The different Krylov solvers were
preconditioned conjugate gradient (PCG), GMRES, CGNR,
BiCGSTAB, LGMRES (the accelerated GMRES method of
Baker, et al. [10]), and FlexGMRES (the inner-outer precon-
ditioned GMRES method of Saad [11]). Other preconditioners
used besides AMG were diagonal scaling (DS), PILUT [8],
GSMG [12], and ParaSails [13].

The smoothers used are all described in [14]. Hybrid
Gauss-Seidel and Hybrid backward Gauss-Seidel perform for-
ward or backward Gauss-Seidel smoothing on-process, and
Jacobi smoothing off-process. The Forward L1-Gauss-Seidel
and Chebyshev smoothers are more advanced, non-hybrid
smoothers, designed for large problems on machines with
multicore nodes.

The coarsening options are one of two independent-set
based coarsening algorithms, HMIS and PMIS, that are de-
scribed in [15]. They were designed with low-complexity
in mind, to enable good performance on large problems on
massively parallel machines. Most modern classical AMG
methods use one of these two coarsening schemes.
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Figure 6. Pareto-efficiency curve for 27-point Laplacian and Convection-diffusion problems at different average power usages.

The -Pmx option controls the interpolation operator, bound-
ing the number of entries per row at the given number (2,
4, and 6 in our experiments). This is done to further reduce
operator complexity and improve parallel performance.

B. Evaluation

We profiled new_ij on Catalyst cluster at LLNL using
libPowerMon for 27-point Laplacian and Convection-diffusion
problems at eight MPI processes on four nodes (two MPI
processes on a dual-processor node, one on each processor).
For both problems, we exhaustively ran each combination
of configuration options listed previously. For each such
combination, we varied two run-time options: 1) number of
OpenMP threads per processor from 1 to 12 (maximum), and
2) processor power limit from 50 watts to 100 watts through
RAPL in steps of 10 watts (that is, global power limits from
400 watts to 800 watts in steps of 80 watts keeping DRAM
power uncapped). For each problem, this resulted in over 62K
unique combinations of configuration and run-time options.

In each run, new_ij executed two phases in sequence:
setup followed by solve. Using phase-level application con-
text recorded by libPowerMon, we extracted execution time
and average power for the solve phase, since typical large
scale runs of real applications represented by new_ij spend
majority of computation time in the solve phase. Figure 6
shows aggregate power usage for different runs of new_ij
solve phase for 27-point Laplacian and Convection-diffusion
problems in figures (a) and (b) respectively. Each grey data
point corresponds to one combination of configuration and
run-time options. We focus on a subset of solvers that were

power-efficient for the system-enforced job-level power limit
applied in steps. Each colored curve joins all runs of a solver
that are Pareto-efficient in terms of average power usage and
execution time. That is, all data points that belong to a solver
on the other side its colored curve away from the origin are
less efficient in terms of power and execution time (i.e., result
in higher power usage and longer execution times). Note that,
the colored configurations represent best-case and in practice
even for each solver, it is difficult to select a combination
of solver configuration and run-time options that is Pareto-
efficient under a fixed processor power limit.

We make several observations regarding the power and per-
formance characteristics of solve phases of 27-point Laplacian
and Convection-diffusion problems from the plots.

First, even in the absence of a global power limit, selecting
the optimal solver configuration and run-time options is non-
trivial. For example, AMG-FlexGMRES is the optimal solver
for 27-point Laplacian and Convection-diffusion problems at
effectively no power limit (towards right hand bottom of
the plots). However, the optimal smoother and other sub-
set of configuration options differ for the two problems—
Chebyshev smoother option results in better performance for
27-point Laplacian, whereas, Hybrid Gauss-Seidel smoother
option shows superior performance for Convection-diffusion.
Also, the optimal number of OpenMP threads for 27-point
Laplacian and Convection-diffusion is 11 and 10, respectively
(due to space limitations, we did not highlight smoother and
coarsening configuration options in the plots).

Second, selecting the optimal solver configuration options
subject to a global power limit is challenging. For example,



the optimal solver for 27-point Laplacian and Convection-
diffusion is AMG-FlexGMRES at high power limits. However,
subject to lower power limits, the difference in execution
times between best-case AMG-FlexGMRES and the absolute
best-case solver configuration under that power limit can be
significant.

Third, for a given solver configuration, picking the optimal
number of OpenMP threads is a non-trivial problem due to
non-linearity between number of OpenMP threads and global
power usage. For example, in case of 27-point Laplacian,
power usage increases between 475 watts and 550 watts with
a decrease in OpenMP thread count for AMG-FlexGMRES
and AMG-BiCGSTAB solvers (the behavior is more chaotic
for AMG-BiCGSTAB). We observe similar behavior with
Convection-diffusion for DS-GMRES solver and specifically
for low power usage configurations (between 400 watts to
475 watts) for all four solvers. Further analysis of hardware
performance counters reveals that such behavior is due to
degree of memory- vs. compute-boundedness of individual
configuration and run-time options.

These observations show that choosing the optimal config-
uration subject to a user-defined or system-enforced constraint
is a non-trivial problem. For a certain system-enforced global
power limit, selecting a configuration known to be optimal
under normal conditions (i.e., without any power constraint)
may be sub-optimal. For example, consider 27-point Laplacian
with a 535 watts global power limit as indicated by the
vertical grey line. The optimal solver AMG-FlexGMRES is
15.1% slower than AMG-BiCGSTAB under the global power
limit. For a certain user-defined energy budget, several solver
configurations exist with power vs. execution time trade-
off. For example in 27-point Laplacian, there exist several
configurations under user-defined energy budget. For instance,
for an energy budget of 11 kJ with 27-point Laplacian there
exist two candidate configurations C1 and C2 with energy
requirements within the defined budget. Then, the optimal
configuration depends on user’s preference for optimizing
execution time or power usage under the energy budget.

VIII. RELATED WORK

A large body of work exists on the measurement of power
at the system level, since power consumption has become
a crucial metric. These approaches can be categorized as
physical vs. model-based measurements with certain accuracy
vs. coverage/overhead trade-offs. Physical measurements are
typically performed by measuring the electrical power usage
at the power supply unit using third-party power meter boards
[16]–[18]. Although such interfaces can accurately track power
consumption at the system-level, their cost and space over-
heads are prohibitive at scale and therefore such interfaces
cannot be scaled beyond a few nodes. IPMI is a message-
based interface designed to monitor platform status (power,
temperature, voltage, fan speed, etc.) at the hardware level
[19]. Using software interfaces to IPMI such as freeIPMI,
OpenIPMI and IPMItool, the user can read the system-level
metrics of interest. Although IPMI is typically supported on

all modern cluster server boards, it must be executed asyn-
chronously, since it operates out-of-band and typically requires
root privileges which makes it difficult for regular users to
use such interfaces on shared clusters. Finally, model-based
power measurement functionality as part of the processor
firmware provides a light-weight interface for processor power
measurement e.g., Running Average Power Limit (RAPL).
Model-based power measurements suffer from two important
drawbacks: they are localized to the processor and they may
not be accurate [3], [20].

Extensive research work has been presented on profiling
application-level context and events [21]–[24] A majority of
this work suffers from a localized view of the system in
terms of correlating power consumption with program context.
Also, most of this work is trace driven where as libPower-
Mon is sampling-based which provides fine-grained, rather
than aggregate power profiles. libPowerMon also provides a
collection of scripts to visualize these two data sets together.
It may be possible to extend our work to write plug-ins for
visualization tools such as Vampir and Scalasca to use them
for visualization.

The work that is most related to ours is Caliper framework
[25]. Caliper was designed for extensibility and provides
interfaces for source-level phase markup. An important differ-
ence between libPowerMon and Caliper is that libPowerMon
records sampling-based profile of application context as well
as important processor-level metrics such as power, effective
frequency, temperature and MSRs. Additionally, libPowerMon
samples system-level metrics using IPMI interfaces which
Caliper does not natively capture.

A large piece of literature exists that describes correlation
of application context with system-level metrics combining
one or more of the profiling techniques listed above. For
example, Georgiou et al. present a modified SLURM instal-
lation with modules for power measurement through IPMI
and RAPL [26]. Their work shows a trade-off in accuracy
and sampling overhead between IPMI and RAPL-based power
measurements and validate their measurements with electric
power meters. Similar line of work studies the feasibility
and effectiveness of several profiling techniques on different
localized settings [27]–[32]. It may be argued that existing
hardware and software profiling techniques can be deployed
to gather the data that libPowerMon collects, however, setting
up such an environment is non-trivial given the temporal
and asynchronous nature of data collection requirements.
An important issue with the profiling tools mentioned in
this section is that they either fail to provide interfaces to
combine application context with system-level metrics, or are
capable of providing aggregate metrics rather than fine-grained
measurements enabled by our sampling-based approach. For
example, power profiling interfaces capture very limited or no
application context. On the other hand, application profiling
tools fail to capture power, thermal and other system-level
metrics at a granularity that enables characterization at a
given program context. Existing sampling-based monitoring
tools suffer from significant profiling overhead due to frequent



interrupt processing and data collection that is always executed
synchronously on the critical path of the application instead
of asynchronously. To the best of our knowledge, this is the
first time we have combined system-level metrics and program
context at this level of granularity at low overhead. Our case
studies show that combining the two levels of profiling enables
us to get insights that were not possible with previously
presented profiling tools.

IX. SUMMARY AND FUTURE WORK

This work demonstrated the importance of combining appli-
cation context and system-level measurements to gain deeper
insights into phase-level interactions between the application
and the system. We plan to use these insights to enhance our
understanding of how allocated resources are consumed by the
application and the system. Based on phase-level performance
and power characteristics, a performance-optimizing run-time
system can make informed decisions about allocating limited
system resources to extract more performance out of a given
application. In turn, these improvements can guide the neces-
sary hardware and software enhancements for efficiently utiliz-
ing available resources in a resource-constrained environment.
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